
XML BASED DATA DESCRIPTION FOR THE PHOTOGRAMMETRIC
DOCUMENTATION OF HISTORIC BUILDINGS

Guenter Pomaska

Bielefeld University of Applied Sciences, Faculty of Architecture and Civil Engineering, Germany
gp@imagefact.de - www.imagefact.de

KEY WORDS: 3D, Archiving, CAD, Close Range, Internet/Web

ABSTRACT:

XML Extensible Markup Language and related technologies establish the basics of second-generation Web applications. The First-
generation Web was based on HTML with respect to the design of publication. Today we focus on structured storage of information,
apart from the application.

The documentation of the Citadel in Wesel stands as an example for a photogrammetric application. The complete photogrammetric
database, including control points, camera data, orientation data and detailed graphical evaluation, is carefully worded as a XML file
format. A XSL processor provides a transformation into HTML for displaying numerical values in a human readable form.

Goal of this study is to provide registered images for further evaluation on distributed systems. A map in SVG displays a symbol for
each camera position. This symbol acts like a container, including all the necessary data for further evaluation. Activating the link,
related to that icon, starts a PHP-Script at the server site. The script initiates a XML parser and generates a Web page, making
available interior and exterior orientation as well as image data at the client site. Applying the client’s JavaScript utility enables
measurements upon request.

Scalable Vector Graphics is the standard for displaying 2D-graphics on the Web. SVG as an XML application, prepares graphic for
interactivity and animation. Applying style sheets provides an increasing number of design options. Remaining is the 3D-graphic
structure. We use the DTD for extensible 3D, the XML formulation of the former VRML format.

Translation utilities, viewer and software concepts for the exemplified duties in a photogrammetric application, applied to building
documentation, are introduced in this article. One can follow the concept, visiting http://www.imagefact.de/zitadelle-wesel.

1. STATIC AND DYNAMIC WEB SITES

1.1 Client-Server Architecture

Applying a client-server architecture does not require a
computer network configuration. One can install a Web server
and a Web browser on the same computer. The client (here the
browser) sends a request to the server, addressed by localhost.
The server is looking for the requested document, transfers the
document to the client and the browser is rendering the file
information into a readable format. The language, a browser
understands, is HTML Hypertext Mark-up Language.
Communication between server and client is agreed via a
protocol, the Hypertext Transfer Protocol. The process is
known under the term static Web application. Major software
components of the Web are the Web browser, the HTTP
protocol, the description language HTML and the Web server.

1.2 Client Sided Dynamic

While a Web site is changing its appearance or content by user
interaction without loading a new document, we are talking
about client sided dynamic. The document object model DOM
enables access to any object (element) and its attributes, that is
included in a Web document. The DOM is implemented in
JavaScript, an extension to Web browsers. We focus here to a
small application calculating control points by spatial
intersection.

JavaScript has a hierarchical structure of application objects.
Under the document level there are form objects existing. A

form itself, is followed by elements. Forms and elements can be
identified by names. If we want to set the value of one of the
input fields in the sample shown in figure 1, we have to code
document.vws.xctrlpt.value = “100.00”; vws stands for the
name of the form, xctrlpt is the name of an input field, value is
the attribut for the content.

Figure 1. Calculating control points applying JavaScript

The HTML coding, applying the input-tag, reads as follows:

<form name="vws">
 <input name="xctrlpt" value=" "
 type ="text" >

 </input>
</form>

Inside the angle brackets more attribute definitions can occur.
This short explanation will help understanding the data
exchange between a Web site and PHP programs.

1.3 Server Sided Dynamic Applying PHP

PHP Hypertext Pre-Processor is a server extension. The
language is embedded in HTML documents. If the server
detects PHP commands, the code will be carried forward to the
PHP interpreter where the HTML code will be first generated
and after processing submitted to the client. The PHP code is
not visible for the client. The browser receives the resulting
HTML code only. The PHP interpreter supports amongst others
XML processing, SQL data base functions, graphics and file
access.

2. DESIGN OF A XML STRUCTURE

2.1 XML Extensible Mark-up Language

XML Extensible Mark-up Language is a meta language to
structure information. XML uses tags, keywords in angle
brackets with additional attributes, to enclose content.
Compared with HTML, the denotation of the tags is not defined
and will be interpreted afterwards by the application.

XML files are plain text files. Rendering XML files requires
other technologies. XML documents are starting with a
prologue, followed by the root element. The prologue displays
details for the (DTD Document Type Definition) as stated
below. The close-range photogrammetric application will
demonstrate the principle.

<?xml version="1.0" encoding= "ISO-8859-1"
standalone="yes" ?>
<!DOCTYPE imageBundle SYSTEM
"imageBundle.dtd">
<imageBundle>
 <!--Inhalt des Dokuments -->
</imageBundle>

The root element imageBundel instances a document class, that
is defined in the !DOCTYPE statement. An element and its
subelements will be represented in the tree structure by nodes.
The element itself consists of a start-tag, the content and an
end-tag. Attributes will added into the start-tag. A
photogrammetric camera definition may look as follows:

<cameraData>
 <camera>
 <type>nikon_28</type>
 <ck>-18.23718</ck>
 <xh>-0.09973</xh>
 <yh>-0.01304</yh>
 <a1>-3.03846E-004</a1>
 <a2>6.43569E-007</a2>
 <formX>23.462</formX>
 <formY>15.600</formY>
 </camera>
</cameraData>

A Web browser displays the tree structure of that document. By
simply clicking the symbols, the nodes can be closed or opened,
as shown in figure 2.

Figure 2. Tree structure of a XML document

2.2 XSL Extensible Stylesheet Language

The XSL Extensible Style Sheet Language provides
transformation from XML into another, better readable format.
A XSL processor can be applied by the Web browser or, as an
alternative. server sided by the application. An off-line
transformation results in a HTML document to be stored on the
server. Another important tool for transformations is XPATH.
XPATH provides search patterns and enables extractions form
XML documents. An external XSL file must be referenced in
the prologue using the statement:

<?xml-stylesheet version="1.0"
href="template.xsl" type="text/ xsl" ?>

We do not discuss the details of XSL here. An application of
the for-each and value-of select statement may be give an idea
how a XSL document is parsed by a XSL processor:

<xsl:for-each
 select="the search pattern">
 <tr>
 <td class = "tab_value"
 <xsl:value-of select="type"/>
 </td>
 </tr>
</xsl:for-each>

HTML tags must be combined with XSL statements. The prefix
xsl: defines the namespace, the class definition defines the
appearance of the element in the browser.

2.3 DTD Document Type Definition

XML documents can be well formed or guilty. A well formed
document becomes a guilty document by adding a DTD. A
DTD defines the grammar for information processing of the
XML file. All elements, attributes entities and specifications
about quantity, content and nesting of elements must be
predefined in a DTD. An extract of the DTD, applied in the
example reads as follows:

<!DOCTYPE imageBundle [
 <!ELEMENT imageBundle (controlPoints*,
 cameraData* ,
 photoPositions*,
 orientationPoints*,
 graphicElements*)>
 <!ELEMENT controlPoints (point*)>
 <!ELEMENT point (pnr*, code*, x+, y+,
 <!ELEMENT pnr (#PCDATA)>

z+)>

function inhalt($parser,$data){
 global $curr_tag,$index,$camera
 switch ($curr_tag){
 case "type": $index=$data;break;
 case "ck": $camera[$index][ck]=$data;break;
 case "xh": $camera[$index][xh]=$data;break;
 case "yh": $camera[$index][yh]=$data;break;
 case "a1": $camera[$index][a1]=$data;break;
 case "a2": $camera[$index][a2]=$data;break;
 case "formX": $camera[$index][formX]=

 ...
 <!ELEMENT cameraData (camera+)>
 <!ELEMENT camera
 (type+, ck+, xh+, yh+, a1+, a2+,
 formX+, formY+)>
 <!ELEMENT type (#PCDATA)>
 <!ELEMENT ck (#PCDATA)>
 <!ELEMENT xh (#PCDATA)>
 <!ELEMENT yh (#PCDATA)>
 <!ELEMENT a1 (#PCDATA)>
 <!ELEMENT a2 (#PCDATA)>
 <!ELEMENT formX(#PCDATA)>
 <!ELEMENT formY(#PCDATA)

Details can not be discussed here. It must be annotated, that the
DTD will be replaced in future by the more powerful Xschema.

With XML, XSL and DTD structured information is separated
from processing: This file structure can be processed with
object-oriented programming languages in client-server
environments.

3. PARSING XML FILES WITH PHP

3.1 The Parser

It is proposed to explain parsing and processing XML-
documents by using the photogrammetric example from above.
Requested are the camera values for the camera referenced by
the description nikon_28. The client’s request typed in the
address line of the browser:

http://www.imagefact.de/zitadelle-wesel/
 parse_camera.php?camera=nikon_28

has to be submitted to the server.

A parser will go through the file until the requested camera is
found. The parser analyses and validates the file structure.
Expat is an event driven parser and provided by PHP. Events
are the occurrences of tags and content. An instance of the
parser is created with the statement:

$parser = xml_parser_create();

It is necessary to set parameter for the parser and handler for the
elements, for example:

xml_set_element_handler($parser,
 "start_element", "end_element");
or
xml_set_character_data_handler(
 $parser, "inhalt");

start_element , end_element and inhalt are functions called by
the parser, if it meets one of the defined events.

3.2 Processing Data

The function inhalt will process, if the content of a tag was
camera. The camera data is stored in arrays.

 $data;break;
 case "formY": $camera[$index][formY]=
 $data;break;
 }
}
After getting the camera data, the arrays must be evaluated and
the requested data, embedded in HTML-tags, has to be
generated and must be passed to the client. PHP uses the echo-
function for writing HTML commands. Figure 3 shows the
answer to a request including image data as rendered by the
browser. The complete examples can be found on the Web
under www.programmierpraktikum.de, follow the navigation to
the readers section (leserbereich), select PHP&XML there from
the menu.

Figure 3. Parsing XML-Information and displaying
the result on a Web page

4. PROCESSING GRAPHIC DATA

4.1 SVG Scalable Vector Graphics

Scalable Vector Graphics SVG is the XML formulation of 2D
vector graphics. It includes drawing of vector data, displaying
of image data, interaction and animation. Structure and
appearance of graphic elements is separated by using style
sheets

Applying a SVG viewer as a plug-in for the Web browser
enables zooming and panning in the graphic area. Figure 4
displays the position of control points and demonstrates the use
of image data inside vector data.

Figure 4. Image data nd vector data combined with SVG

The images are rectified and represent to a certain extend a true
scale image map. Zooming in is followed by loss of quality.
This is not the case with vector data. The appearance of the
drawing, shown in figure 5, is dependent from the applied style
sheet. The file content can be easily transformed to different
media, like large format printers or PDAs. Furthermore
sophisticated design possibilities like pattern filling, shading,
insertion of symbols and others are provided by SVG.

Figure 5. Appearance of a SVG file is driven by a style sheet

SVG enables among other features interactivity and animation.
The photogrammetric application benefits from interactivity.
Registered camera positions are marked in the xy-drawing
using symbols. Those symbols carry a link to an evaluation
software, that has access to the image data. Clicking a camera
symbol loads a page, enabling the user to take on-line
measurements. A first version of this software, written in PHP,
is implemented with single image measurement functions. The
PHP interpreter allows access to the file system of the server.
From there measurements can be stored in the XML structure.
Figure 3 is part of that evaluation software. The image
coordinate measurement is client sided performed by means of
JavaScript.

Figure 6. XY-Drawing of the exposure arrangement

4.2 X3D Extensible 3D

3D graphics data for the Web is known as VRML Virtual
Reality Modeling Language description. That format
convention is updated to the XML version, predicted as X3D.
The OCTAGA viewer can be applied for VRML and X3D in
stand-alone mode or as a plug-in for Web browsers. Virtual 3D
models are coded in such a scene graph format. One can
navigate through the building inside the Web browser or
download the sometimes very huge files in advance. Visiting
the project’s Web site will guide the user to a virtual
reconstruction of the roof.

5. CONCLUSION

XML as a meta language is designed for structuring information
and separating information from processing. The family of
XML-languages and tools, like XSL, XPATH, SVG or X3D,
provide device and platform independent processing. XML
structured information can be prepared for displaying on
monitors and PDAs or printing. The above given examples,
taken from a photogrammetric project, stay for a variety of
application potentials. The sketched code here is printed to give
an impression of the need for teaching and learning XML based
Web technology.

References from Books:
Pomaska, G., 2005. Grundkurs Web-Programmierung. Vieweg-
Verlag, Wiesbaden.

References from Other Literature:
Pomaska, G., 2003. Introduction of SVG as a data interchange
format for architectural documentations. CIPA International
Symposium, Antalya, Turkey.

Pomaska, G., Dementiev, N. , 2005, XML basierte
Datenformulierung zur Web-konformen Dokumentation
photogrammetrischer Bauaufnahmen. PFG Zeitschrift für
Photogrammetrie, Fernerkundung und GeoInformation

References from Web sites:
http://www.programmierpraktikum.de
http://www.imagefact.de/zitadelle-wesel
http://www.adobe.com/svg
http://www.octaga.com

	STATIC AND DYNAMIC WEB SITES
	Client-Server Architecture
	Client Sided Dynamic
	Server Sided Dynamic Applying PHP

	DESIGN OF A XML STRUCTURE
	XML Extensible Mark-up Language
	XSL Extensible Stylesheet Language
	DTD Document Type Definition

	PARSING XML FILES WITH PHP
	The Parser
	Processing Data

	PROCESSING GRAPHIC DATA
	SVG Scalable Vector Graphics
	X3D Extensible 3D

	CONCLUSION

